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Abstract

Detection of periodic patterns of interest within
noisy time series data plays a critical role in var-
ious tasks, spanning from health monitoring to
behavior analysis. Existing learning techniques
often rely on labels or clean versions of sig-
nals for detecting the periodicity, and those em-
ploying self-supervised learning methods are re-
quired to apply proper augmentations, which is
already challenging for time series and can re-
sult in collapse—all representations collapse to
a single point due to strong augmentations. In
this work, we propose a novel method to detect
the periodicity in time series without the need for
any labels or requiring tailored positive or neg-
ative data generation mechanisms with specific
augmentations. We mitigate the collapse issue by
ensuring the learned representations retain infor-
mation from the original samples without impos-
ing any random variance constraints on the batch.
Our experiments in three time series tasks against
state-of-the-art learning methods show that the
proposed approach consistently outperforms prior
works, achieving performance improvements of
more than 45–50%, showing its effectiveness.

Code: https://github.com/eth-siplab/
Unsupervised Periodicity Detection

1. Introduction
Periodic structure in time series data holds significant impor-
tance in monitoring individuals’ behaviors and health (Sand-
vik et al., 1995; Hogan, 2006). A wide range of tasks re-
lated to time series, including step counting (Master et al.,
2022) and heart rate monitoring (Mandsager et al., 2018),
can reveal crucial information about one’s health situation.
Moreover, on a daily basis, people generate substantial
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amounts of time series data from smartphones or wear-
able devices (Bayoumy et al., 2021), which can be used
to provide insights into their behaviors and health (Huhn
et al., 2022; Hughes et al., 2023). However, labeling these
huge amounts of temporal data is challenging, expensive,
and resource-intensive. For instance, if the desired task
is to monitor the respiration or heart rate, collecting gold-
standard synchronized signals for obtaining ground truth
information from a medical sensor or video is not only time-
consuming but also expensive (Yang et al., 2023; Kiyasseh
et al., 2020). Moreover, obtaining ground truth is not feasi-
ble in daily life, i.e., non-controlled environments outside
of the lab, due to the potential discomfort it may impose
on individuals (Gao et al., 2023), which can be caused by
privacy concerns, such as the use of video recording (Ryoo
et al., 2017), or the use of bulky electrodes with gels, as in
the case for medical sensors (Stracina et al., 2022).

The self-supervised learning (SSL) paradigm provides a so-
lution to overcome this problem by exploiting unlabelled
data to formulate pretext tasks such as predicting the rotation
of images (Gidaris et al., 2018), or contexts (Doersch et al.,
2015) to learn the invariant representations of samples (Jing
et al., 2022) to the applied transformation. The effectiveness
of representations on downstream tasks directly depends on
the inter-sample semantic similarity relations (Balestriero &
LeCun, 2022; Wang et al., 2022b) that are created through
tailored data augmentation techniques to preserve semantics
depending on the task (Tian et al., 2020; Chen et al., 2020)
and input characteristics (Demirel & Holz, 2023). However,
even when the downstream task is known, creating samples
that keep the task-relevant information intact is more chal-
lenging in noisy quasi-periodic time series due to the com-
plexity of the dynamical data generation mechanisms (West
et al., 1999), where strong augmentations can cause model
collapse (Jing et al., 2022) while weak augmentations can
hinder model convergence (Tian et al., 2020).

Considering these limitations, in this work, we propose a
novel method that regularizes the parametric learners to
detect periodic components in time series data by punish-
ing the randomness in a sequence while capturing as much
information as possible about the periodicity without requir-
ing any specialized data augmentation technique. Since our
proposed method bypasses the intricate data augmentation
process required for generating positive or negative samples
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to learn the relations or invariant representations between
samples, we prevent the model collapse issue by relating the
learned representations with original samples from which
they originated, rather than decorrelating the representations
with each other or imposing random variance constraints on
the batch. Our approach argues that every learned represen-
tation should retain a remnant of the sample from which it
originates. The contributions can be summarized as follows:

• We propose a novel set of regularizers that consider
the generation mechanism of time series data to detect
periodic patterns of interest in the presence of noise.

• We introduce a new approach to prevent collapse in un-
supervised periodicity detection by relating learned rep-
resentations with samples from which they originated,
resulting in relaxed assumptions for batch statistics.

• We demonstrate that the proposed regularizers help the
learners extract useful representations without requir-
ing any supervision or specialized time series augmen-
tations for generating positive/negative samples.

2. Method
2.1. Notations

We use lowercase symbols (x) to denote scalar quantities,
bold lowercase symbols (x) for vectors, e.g., time series,
and capital letters (X) for random variables. The paramet-
ric functions is represented as fθ(.) where θ is the parame-
ters. The discrete Fourier transformation is denoted as F(.),
yielding a complex variable as F(x) ∈ C. The detailed cal-
culations for each operation are given in the Appendix A.1.

2.2. Objective

Given a dataset D = {(xi)}Ki=1 where each xi consists
of real-valued sequences with length L, (x1, x2, . . . , xL),
which are sampled uniformly. The objective is to train a
learner fθ : X → Rl which seeks to learn periodic repre-
sentations of interest in the data such that when it is evalu-
ated on another set Dl = {(xi, yi)}Mi=1, the representations
zi = fθ(xi) will mainly contain desired periodic source,
which can be detected i.e., argmax

k
|F(zi)k| = yi ∈ R+.

Since our objective is to detect the periodic source of interest
in the uniformly sampled time series data without using any
labels, we proposed a set of regularizers designed to help the
learners extract useful representations that capture the de-
sired periodicity. In the following sections, we describe the
proposed regularizers and outline their primary objectives.
Our first proposed regularizer decreases the randomness of
the overall time series sequence while maximizing the peri-
odicity by minimizing the entropy of the spectra as follows.

2.2.1. MAXIMIZING THE PERIODICITY

Proposition 2.1 (Maximizing periodicity). Minimizing the
spectral entropy of sequential data is nothing but maximiz-
ing its periodicity in the time domain.

θ∗ = argmin
θ

Lse = argmax
θ

I(y;x),

where Lse = −
∑
w

Sfθ (ω) logSfθ (ω),

Sfθ (ω) =
Sfθ (ω)∑
ω Sfθ (ω)

, Sfθ (ω) =

∣∣∣∣∣∑
n

fθ(x)ne
−jωn

∣∣∣∣∣
2

Proof. The spectral entropy is maximum (periodicity is min-
imum) when the sequence generation process is a Gaussian
with zero mean, σ2 variance, i.e., W (t) ∼ N (0, σ2

w).

E[W (t)] = 0, RWW (τ) = E[W (t+ τ)W ∗(t)] (1)

RWW (τ) = σ2δ(τ)
F(.)−−−→ SW (ω) = σ2

ω (2)
H(SW ) ≥ H(SX),∀x ∈ X (3)

The spectral entropy is minimum if the sequence generation
process is periodic, i.e., RPP (τ) = RPP (τ + T ).

RPP (τ) =

∞∑
n=−∞

αne
jω0nτ , ω0 =

2π

T
(4)

αn =
1

T

∫ T/2

−T/2

RPP (τ)e
−jω0nτdτ (5)

SP (w) = 2π

∞∑
n−∞

αnδ(ω − nω0) (6)

H(SP ) ≤ H(SX),∀x ∈ X (7)

Therefore, H(SP ) ≤ Lse ≤ H(SW ).

The last inequality completes the proof by showing that min-
imizing the spectral entropy of sequential data is equivalent
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Figure 1. (a) A time sequence sample w(t) from a Gaussian pro-
cess (b) with its normalized spectra SW (ω), (c) a periodic se-
quence in the presence of added random noise, denoted as p(t) (d)
the corresponding spectra of the sequence p(t), denoted as SP (ω).
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to maximizing its periodicity. A detailed proof, with the ban-
dlimited discrete case, can be found in the Appendix A. We
also provide an intuitive demonstration of samples from data
generation processes and corresponding spectra in Figure 1
where it can be observed that the periodic data has lower
entropy compared to the sample from Gaussian distribution.

Although this regularizer can induce periodicity in se-
quences, it will cause the model to collapse to a single
point and produce a constant output. The existing solutions
for preventing collapse generally incorporate the notion of
class balance across the dataset (Krause et al., 2010) or
batch (Bardes et al., 2022; Speth et al., 2023). Such ap-
proaches, however, are overly optimistic since during SSL
training, where there is no label information, this regularizer
may punish the models even for learning correct represen-
tations. Alternatively, the models can learn task-unrelated
information to introduce diversity in representations. There-
fore, to prevent the degenerate solution, we have incorpo-
rated a secondary regularizer that ensures the extracted rep-
resentations retain information from the original samples.

2.2.2. PREVENTING THE COLLAPSE

Proposition 2.2 (Degenerate solution). The relative entropy
between the spectral distributions of samples and extracted
representations is upper-bounded by a degenerate solution.

DKL(P ∥ Q) > Lds ≥ 0, where Var(Q) = 0,

and Lds =
∑
ω

SX(ω) log
SX(ω)

Sfθ (ω)
,

SX(ω) =
SX(ω)∑
ω SX(ω)

, SX(ω) =

∣∣∣∣∣∑
n

xne
−jωn

∣∣∣∣∣
2

(8)

Proof. There exists a sample with a spectrum SX(ω) for
which a collapsed learner, trained to maximize periodicity
(minimize spectral entropy), results in an infinite divergence
of spectral distributions between samples and embeddings.

argmin
θ

Lse =⇒ lim
Lse→0

Sfθ (ω) → 0, ∃ω ∈ Ω (9)

∃ω ∈ (−∞,∞), Sfθ (ω) = 0 ∧ SX(ω) ̸= 0, (10)

yields DKL(P ∥ Q)→∞, SX(ω) ∼ P, Sfθ (ω) ∼ Q

We provide an intuitive illustration of the proposition with a
sample in Figure 2 and the detailed proof in Appendix A.

The proposition 2.2 suggests that degenerate solutions can
be prevented if the learner seeks to minimize the relative
entropy between the spectra of samples and extracted rep-
resentations. In other words, this proposed regularization
technique helps the learner to generate diverse represen-
tations according to the input distribution, preventing the

collapse where inputs are mapped to the same vector, while
avoiding the imposition of random variances within a batch.

The usage of these two regularizers together also elimi-
nates the requirement for generating positive or negative
samples to construct embedding space with specialized aug-
mentations which is known to be particularly challenging
for non-stationary time series data. Moreover, most of the
unsupervised learning methods prevent model collapse by
repelling the negative pairs which are randomly chosen from
the batch (Chen et al., 2020), selected from memory banks
according to the learned relevance (He et al., 2019), or en-
forcing distinct embeddings within a batch (Bardes et al.,
2022). However, since there is no label information during
training, these methods can repel/decorrelate representa-
tions of samples from the same category which can lead to
suboptimal embedding space. Therefore, to mitigate this
problem, we take a different approach and govern the repre-
sentation space through two opposing regularizers, seeking
to find the periodicity of interest in the noisy time sequence
data without causing significant distortions to the features.

When we calculate these two loss functions, we specify a
bandlimited frequency range of interest f∗ instead of consid-
ering the entire continuous spectrum while minimizing the
overall power in frequencies outside of this defined range
f

′
. Minimizing frequencies outside of the specified range,

essentially applying a bandpass filter, is a common approach
in the literature (Speth et al., 2023; Gideon & Stent, 2021).
We observe marginal improvements with this addition while
the improvement is diminished with better-designed filters.
The overall loss for training models is given in Equation 11.

L = −
∑
f∗

S(ω) logS(ω) +
∑
f∗

SX(ω) log
SX(ω)

S(ω)

+
∑
f ′

S(ω), ω = 2πf and f
′
= U \ f∗ (11)
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Figure 2. (a) 8-second time sequence x(t), (b) its obtained repre-
sentation from a model that is trained to maximize periodicity of
the signal, (c) the normalized spectra of the sample and representa-
tion. As the model is trained to minimize the spectral entropy, the
values of Sfθ (ω) diminish to zero, making the divergence infinity.
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The learner which is regularized by the proposed loss func-
tion is similar to an adaptive sinusoidal selector based on the
Fourier transform. In uniformly sampled time sequences,
periodicity is typically identified by the highest value in
the Fourier transform (Li et al., 2010). However, this ap-
proach fails when there exist multiple periodicities within
the frequency range of interest, or when the desired peri-
odic pattern is obscured by noise. The proposed training
regularizers help the model learn the desired pattern in the
time domain such that it can detect the signal even under
the noise. The characteristic of this loss is provided by the
minimization of the spectral entropy. This is evident when
considering that, if the spectral entropy term is excluded
from the overall loss function, the optimization converges to
a bandpass-filtered Fourier transform of the original signal.

3. Experiments
We compare our method with several techniques, from tradi-
tional heuristic-based methods such as autocorrelation and
Fourier transform-based approaches, as well as learning-
based methods including supervised and self-supervised.

3.1. Datasets

We conducted experiments on eight datasets across three
tasks, including heart rate (HR) estimation from electrocar-
diogram (ECG) and photoplethysmography (PPG) signals,
step counting using inertial measurements (IMUs), and res-
piratory rate (breathing) estimation from PPG signals. We
provided short descriptions of each dataset below, and fur-
ther detailed information can be found in Appendix B.

Heart rate For ECG, we used PTB-XL (Wagner et al.,
2020) to investigate performance in a dataset with cardio-
vascular diseases, WESAD (Schmidt et al., 2018), and
DaLiA (Reiss et al., 2019) to study the real-life settings,
where the signals are corrupted with different level of noise
as they are collected during activities like cycling. We
used the IEEE SPC12 with 22 (Zhang et al., 2015), and
DaLiA (Reiss et al., 2019) for PPG-based HR prediction.

Respiratory rate We used CapnoBase (Karlen et al.,
2013) with two different window sizes and BIDMC (Pi-
mentel et al., 2017) for estimating respiratory rate (RR)
from the PPG, where both datasets provide true RR using
gold standard respiratory signals and capnography.

Step counting We used the Clemson dataset (Mattfeld
et al., 2017), which is proposed to improve pedometer eval-
uation. We conducted experiments using inertial measure-
ments from the wrist with both regular and semi-regular
walking settings where labels are available through videos.

3.2. Baselines

Self-supervised We compared our method with self-
supervised learning techniques within the linear evaluation
setting (Chen et al., 2020), including SimCLR (Chen et al.,
2020), NNCLR (Dwibedi et al., 2021), BYOL (Grill et al.,
2020), TS-TCC (Eldele et al., 2021), TS2Vec (Yue et al.,
2022), VICReg (Bardes et al., 2022), Barlow Twins (Zbon-
tar et al., 2021), and SimPer (Yang et al., 2023).

No supervision We conducted experiments with a
learning-based method that requires no labels for fine-tuning.
Specifically, we compared our work with SiNC (Speth et al.,
2023) which is a non-contrastive unsupervised learning
framework for periodicity detection without using any labels
while imposing random variance constraints on the batch.

Supervised We included two supervised models: a fully
convolutional network and a convolutional network with
LSTM (Hochreiter & Schmidhuber, 1997), both commonly
used in time series tasks previously (Qian et al., 2022).

Traditional We also included traditional heuristic-based
methods, i.e., the Fourier transformation and autocorrelation
function, where both are widely used before (Saul & Allen,
2000) to detect periodicity in time series. Additionally, we
compared our method with RobustPeriod (Wen et al., 2021)
which is a rule-based periodicity detection approach by inte-
grating information from both time and frequency domains.
More details for each baseline are given in Appendix C.

3.3. Implementation

Self-supervised We follow the same implementation
setup with previous works (Qian et al., 2022; Demirel
& Holz, 2023) for self-supervised learning in time series.
Specifically, we use a combination of convolutional with
LSTM-based network, which shows superior performance
in many time series tasks (Qian et al., 2022; Biswas et al.,
2019), as backbones for the encoder fθ(.) where the projec-
tor is two fully-connected layers. During pre-training, we
use InfoNCE (for contrastive learning-based methods) as
the loss function, which is optimized using Adam (Kingma
& Ba, 2015) with a learning rate of 0.003. We train the
models with a batch size of 256 for 120 epochs and decay
the learning rate using the cosine decay. After pre-training,
we train a single linear layer classifier on features extracted
from the frozen pre-trained network, i.e., linear probing.
Although we aim to enhance performance by experimenting
with various architectures and hyperparameters, we consis-
tently observed the best average performance across datasets
with the specified implementation details, similar to previ-
ous studies. Detailed hyperparameters and augmentations
for each SSL technique can be found in Appendix C.3.
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No supervision Unlike the self-supervised methods, we
employ the backbone as a representation learner without
having a non-linear projection layer. In our initial experi-
ments, we observed that LSTM or temporal dilations cause
loss of frequency information similar to (Speth et al., 2023),
we, therefore, use U-Net (Ronneberger et al., 2015) as the
encoder architecture with single dimensional layers for time
series. We use the proposed loss function in Equation 11,
which is optimized using Adam with a learning rate of
0.001. We train the model with a batch size of 512 and
reduce the learning rate by half when the training loss stops
decreasing for 15 consecutive epochs. We used the same im-
plementation for all tasks and datasets while giving the same
importance to each loss term in Equation 11 without tuning,
i.e., no specific task or dataset optimization is performed.

For both learning paradigms, model selection is performed
on the training sets with the lowest loss value similar
to (Gideon & Stent, 2021; Demirel & Holz, 2023). The
reported results are mean and standard deviation values
across three independent runs with different random seeds.

Supervised We follow the same implementation as pre-
vious works (Qian et al., 2022; Demirel & Holz, 2023) for
supervised learning in time series. Specifically, we use two
different network architectures: the first is a combination
of convolutional and LSTM-based networks (Qian et al.,
2022; Biswas et al., 2019), similar to the self-supervised
implementation of the encoder architecture, and the second
is a fully convolutional neural network that includes a final
linear layer in the end instead of a projection block. For
the training of both architectures, we use categorical cross
entropy as the loss function, which is optimized using Adam
with a learning rate of 0.001. We train the models with a
batch size of 64 for 120 epochs. The model selection is
performed on the validation sets with the lowest loss, where

the validation set is created by randomly splitting 10% of
remaining data after excluding the test subjects. Details of
the architectures and parameter comparisons are provided
in Appendix D.1. The performance of various architectures
with different sizes is discussed in Appendix E.3.

Traditional We also compare our method with the rule-
based periodicity detection methods in addition to the
learning-based techniques. In our evaluation, we consider
the frequency domain approach, which detects underlying
periodic patterns using Fourier transforms, and the time do-
main, where signals are correlated with themselves through
autocorrelation function (ACF) (Wen et al., 2023). Addi-
tionally, we compare our method with an approach that
combines the time and frequency domains using the peri-
odogram and the ACF, integrating the Fisher method for
periodicity detection (Wen et al., 2021). Since these meth-
ods are not learning-based, they fail to detect periodicities
when evaluated on datasets containing periodic noise in the
same band, limiting generalization across various conditions.
Since traditional methods lack randomness, we conducted
the experiments only once and reported the results, i.e., no
standard deviation is calculated for rule-based methods.

4. Results and Discussion
We present the main results of our proposed approach com-
pared to state-of-the-art methods across the three time series
tasks in eight datasets in Tables 1 to 4. Overall, the pro-
posed set of regularizers has demonstrated substantial perfor-
mance improvements, reaching up to 45–50% in some tasks,
compared to other supervised and self-supervised learning
methods with rule-based techniques. More importantly, our
method outperforms other supervised learning-based tech-
niques, which require label information, while eliminating

Table 1. Performance comparison of ours with other methods in ECG datasets for HR detection

Method PTB-XL DaLiAECG WESAD

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑
Heuristic
Fourier 10.51 28.65 49.12 4.06 15.46 73.73 4.88 18.57 56.69
Autocorrelation 8.64 19.93 59.63 7.07 14.07 76.34 4.19 8.046 89.90
RobustPeriod 72.79 80.87 -2.93 12.79 23.21 37.49 25.16 30.18 10.23
Supervised
DCL 6.08±0.78 14.23± 1.43 76.40±6.02 3.91±0.37 6.96±1.06 91.42±2.5 9.14±0.78 7.23±0.75 85.44±6.32
CNN 9.09±0.27 16.37±0.33 66.11±1.75 5.39±0.16 8.36±0.15 89.44±0.72 10.69±0.67 13.57±1.01 50.10±12.5

Self-Supervised
SimCLR 9.13±0.73 18.78±0.12 70.67±0.55 6.23±1.10 14.38±1.67 68.46±5.25 7.09±0.24 11.05±0.51 65.80±2.96
NNCLR 10.05±2.06 18.74±1.96 61.50±7.71 8.33±1.85 10.89±2.08 79.06±8.01 8.84±1.14 11.64±1.33 59.48±9.39
BYOL 11.92±3.44 24.07±8.94 50.67±19.7 7.39±0.27 10.55±0.39 81.57±0.93 12.21±0.35 15.93±0.45 28.99±2.55
TS-TCC 10.13±0.52 18.79±0.65 54.23±4.62 5.13±0.08 7.75±0.13 90.65±0.09 6.16±0.29 8.27±0.40 83.30±1.68
TS2Vec 9.52±3.54 24.26±6.46 52.98±10.08 4.78±0.23 7.14±0.18 88.95±0.13 6.24±0.17 7.33±0.37 84.12±2.10
VICReg 15.09±0.23 23.51±0.34 01.35±0.53 13.12±4.66 18.82±4.30 66.18±10.15 10.29±0.62 13.93±0.84 45.27±5.33
Barlow Twins 13.78±3.73 22.96±5.30 43.90±10.03 13.47±0.50 18.02±0.58 56.97±3.23 11.61±0.34 15.09±0.50 31.19±3.37
SimPer — — — 10.11±2.53 16.12±1.57 60.62±7.23 8.16±0.27 12.13±0.62 52.17±3.21

No Supervision
SiNC 3.97±0.01 13.71±0.03 79.27±0.13 1.72±0.013 2.65±0.10 98.96±0.03 2.41±0.01 4.13±0.13 93.21±0.14
Ours 3.75±0.02 13.58±0.03 79.30±0.17 1.29±0.001 2.08±0.01 99.12±0.01 2.13±0.01 3.88±0.06 93.52±0.61
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Table 2. Comparison of methods in Step counting

Method Clemson (Regular) Clemson (Semi-regular)

MAPE↓ MAE↓ MAPE↓ MAE↓
Heuristic
Fourier 12.16 7.60 44.94 13.23
Autocorrelation 39.96 24.45 47.64 13.76
RobustPeriod 14.87 24.20 47.39 13.91
Supervised
DCL 5.99±0.34 3.45±0.32 19.59±1.54 8.98±0.87
FCN 6.15±0.60 3.53±0.33 17.22±0.31 6.98±0.23

Self-Supervised
SimCLR 6.22±0.17 5.52±0.14 24.41±1.80 14.22±1.52
NNCLR 6.26±0.81 5.58±0.72 25.12±0.74 15.38±0.58
BYOL 6.69±0.54 5.95±0.48 25.48±0.46 15.22±0.30
TS-TCC 6.01±0.33 3.80±0.38 20.08±0.33 10.95±0.33
TS2Vec 6.54±0.76 5.17±0.64 26.80±0.60 16.62±0.46
VICReg 10.93±3.96 9.81±3.52 26.90±1.02 15.92±0.84
Barlow Twins 6.87±0.16 5.46±0.13 19.97±0.70 11.14±0.46
SimPer 7.03±0.57 6.75±1.43 23.43±0.95 15.12±0.41

No Supervision
SiNC 22.92±6.61 13.83±4.02 37.12±0.01 12.31±0.28
Ours 5.95±0.21 3.42±0.17 35.18±0.02 14.21±0.97

the necessity for implementing specialized data augmenta-
tion methods to learn periodic representations from data.

Tables 3 and 4 show that the rule-based methods fail to de-
tect periodicity when applied to datasets containing multiple
periodic components with noise. For example, autocorre-
lation, one of the most common methods for periodicity
detection (Wu et al., 2021; Wang et al., 2006), performs
poorly in various datasets that contain multiple periodicities
with a high noise where the periodicity of interest is hidden.

Another interesting observation from the results is that the
SimPer, designed for extracting representations related to
periodic information from data similar to this work, per-
forms worse when applied to noisy time series compared to
other self-supervised techniques, despite sharing the same
downstream task. This might be attributed to the fact that
SimPer designed specialized augmentations that alter the pe-
riodicity of the sample within and contrast through that for
representation learning. However, when dealing with time
series containing multiple periodicities under noisy condi-
tions, the specific augmentation can lead to spectral overlap-
ping, resulting in suboptimal performance. Moreover, since
there is no label information during self-supervised training,
this method can also learn the features related to periodic
noise, which is impossible to filter out as it lies on the same
frequency band with the interested periodicity.

From the results, we can see that our proposed method
significantly outperforms SiNC and VICReg, which impose
a hinge loss on the variance over a batch of representations
to enforce diverse outputs to prevent collapse, by a large
margin (up to 73.9% with a 10.1% on average in tasks).

These empirical findings suggest that the assumption of hav-
ing diverse samples in a batch is quite arguable, especially
depending on the downstream task, where the pattern of

Table 3. Comparison of methods in Respiration

Method CapnoBase (64-second) CapnoBase (32-second)

MAE↓ RMSE↓ MAE↓ RMSE↓
Heuristic
Fourier 4.08 4.96 4.66 5.47
Autocorrelation 23.08 26.65 36.77 40.45
RobustPeriod 7.94 8.50 8.03 8.55
Supervised
DCL 5.76±0.28 7.45±0.27 5.74±0.08 7.68±0.07
FCN 6.00±0.20 8.15±0.28 5.41±0.24 7.57±0.40

Self-Supervised
SimCLR 3.72±0.27 4.94±0.20 3.93±0.70 5.48±1.00
NNCLR 3.70±0.52 4.83±0.45 3.86±0.69 5.58±1.06
BYOL 4.09±0.40 5.45±0.42 4.40±1.19 6.05±1.58
TS-TCC 4.37±0.45 5.74±0.41 4.74±1.60 6.38±1.84
TS2Vec 7.00±3.30 8.44±4.62 5.57±2.76 7.93±3.83
VICReg 3.99±0.43 5.21±0.42 4.05±0.83 5.77±1.19
Barlow Twins 3.56±0.43 4.76±0.50 4.21±1.01 5.85±1.40
SimPer 3.89±0.64 5.03±1.26 5.01±0.90 7.96±1.75

No Supervision
SiNC 4.11±0.10 5.44±0.31 4.09±0.04 5.29±0.06
Ours 3.40±0.20 4.41±0.43 3.74±0.03 4.77±0.12

interest can be severely hidden by noise such that the model
can learn random features from the samples to have diversity
in a batch of representations. The empirical results align
with our initial proposition and the motivation behind intro-
ducing a novel regularizer term, which prevents the model
collapse by ensuring that the extracted representations retain
traces from the samples from which they originated rather
than relying on random variance constraints in the batch.

Another interesting outcome of the results is when our
method is outperformed by supervised and self-supervised
methods while having a minor performance gap with unsu-
pervised techniques, which is the case for DaLiAPPG and
Clemson semi-regular. We conjecture that the performance
difference between supervised and unsupervised methods
in these datasets is due to the average level of noise in the
samples, making the periodic pattern of interest completely
hidden and hard to extract without supervision. Similarly, in
the case of semi-regular walking, the periodic patterns in the
training decrease significantly compared to regular, leading
to poor performance by unsupervised methods due to their
inability to effectively learn desired patterns. Since our ap-
proach learns the function fθ by minimizing the expectation
of the proposed loss, which is known as the empirical risk
minimization (ERM), the model converges to a point where
the risk is minimal in the training set. When the process is
unsupervised, the model might inadvertently learn the peri-
odic noise or random features from the data, which leads to
failures during the evaluation. Contrarily, in self-supervised
and supervised scenarios, models may learn dataset statistics
with label information, such as mean values. The model can
then use this during evaluation, contributing to improved
performance for imbalanced datasets (Yang & Xu, 2020).

These results suggest that the methods should be evaluated
with several tasks in multiple datasets to investigate if they
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Table 4. Performance Comparison of ours with other methods in PPG datasets for HR estimation

Method IEEE SPC12 IEEE SPC22 DaLiAPPG

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ↑
Heuristic
Fourier 12.12 20.09 72.17 14.83 25.81 35.15 34.98 47.13 2.72
Autocorrelation 56.65 64.58 24.89 41.16 49.81 3.945 30.59 39.09 9.18
RobustPeriod 19.56 31.99 41.10 22.34 35.47 33.50 23.43 30.12 21.53
Supervised
DCL 19.90±1.10 26.34±1.10 25.53±4.2 22.43±0.62 27.17±0.60 11.95±5.1 5.97±0.19 11.83±0.36 80.41±0.9
CNN 10.05±0.18 18.12±0.40 67.20±0.9 17.97±0.33 23.06±0.36 21.91±1.76 7.35±0.14 13.74±0.26 74.22±0.55

Self-Supervised
SimCLR 12.42±0.05 20.96±0.30 60.41±0.52 21.08±1.79 27.94±3.17 13.20±9.97 12.01±0.14 19.46±0.14 58.31±0.39
NNCLR 13.14±0.49 18.86±0.49 69.82±0.06 20.79±0.90 26.39±1.45 14.73±6.34 12.94±0.31 20.02±0.49 51.12±2.54
BYOL 18.71±0.93 25.01±1.50 48.82±4.36 20.01±0.80 25.58±1.19 15.25±1.45 11.67±0.32 17.57±0.23 63.96±0.97
TS-TCC 11.56±0.41 18.04±0.66 68.38±1.41 18.77±0.23 23.90±0.31 28.73±1.40 8.12±0.30 14.89±0.21 67.13±0.53
TS2Vec 9.75±0.08 17.82±0.43 75.43±0.33 25.77±0.17 31.90±0.16 06.40±2.31 10.83±0.13 17.89±0.19 60.10±0.62
VICReg 13.17±0.82 20.38±1.27 59.76±4.16 24.17±0.62 30.53±0.41 15.28±3.45 14.90±0.16 21.94±0.11 45.38±0.07
Barlow Twins 13.22±0.34 20.42±0.88 64.51±4.01 25.14±0.89 31.35±0.82 10.15±2.04 18.26±0.57 23.41±0.29 23.42±7.30
SimPer 15.10±0.20 21.20±0.26 52.75±0.84 26.30±0.35 30.90±0.63 05.30±3.38 16.35±0.36 23.00±0.63 38.11±1.38

No Supervision
SiNC 19.34±5.38 28.44±5.41 38.35±7.60 21.93±5.46 25.52±5.18 24.61±6.20 14.20±1.30 25.66±1.39 27.91±4.65
Ours 9.30±0.10 16.50±0.20 77.60±0.43 10.27±0.37 19.62±0.71 44.10±0.89 27.41±4.73 31.26±4.55 18.12±3.86

generalize and perform well under different characteristics
and conditions, i.e., noise types and levels, narrow/wide
bandwidth for the periodicity of interest. Otherwise, the
hyperparameters (specific augmentations with thresholds)
can be optimized for a single task while performing poorly
for the rest. It is important to emphasize that our implemen-
tation (the model architecture and weights for loss terms)
remained consistent across all experiments, ensuring a stan-
dardized evaluation. We conduct detailed ablation experi-
ments to investigate further the impact of components of
our method on the performance across the datasets.
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Figure 3. The distribution of the spectral relative entropies be-
tween samples P and optimal waveforms Q which are obtained
for each sample using the labels. In other words, SX(ω) ∼ P,
and Sf∗

θ
(ω) ∼ Q, where f∗

θ is the optimal model that extracts
representations that only contain the desired periodicity.

4.1. Ablation Study

In this section, we present a comprehensive examination
of our proposed method and the effect of its components
on performance of the models for detecting the periodic-
ity of interest. Mainly, we investigate the effect of each
proposed loss term on performance across datasets while
establishing connections between dataset characteristics in
relation to the average noise levels and learning paradigms.
Therefore, first, we extend our investigation for the case
when the supervised algorithms significantly outperform
our approach. Figure 3 illustrates the distribution of relative
entropies computed between the spectra of original samples
and optimal waveforms using a continuous probability den-
sity curve (Waskom, 2021), where the optimal samples only
contain a pure sinusoidal at the frequency of the interest.

Figure 3 gives an explanation for the performance variation
in supervised and unsupervised learning across datasets by
demonstrating and comparing the level to which the pattern
of interest is hidden by noise. Heuristic-based approaches
typically require the SNR of a sample to exceed a certain
threshold to detect the pattern, which can vary depending
on the specific method, as these methods are not learning-
based. In contrast, our method is a learning-based approach
designed to train a model that seeks to learn the patterns
of interest using the training set and detect those patterns
even when they are hidden by noise or other periodicities
in unseen samples. One significant drawback of relying
on complete unsupervision for a learning-based method is
that if the training set lacks sufficient diverse samples with
a relatively high SNR for the model to learn the desired
periodic patterns, the model may end up learning noise
or random features from samples instead of the desired
periodic pattern. We, therefore, believe that the average
SNR of a dataset is particularly important during the training

7



An Unsupervised Approach for Periodic Source Detection in Time Series

Table 5. Ablation on proposed regularizers in PPG datasets for HR estimation
Method IEEE SPC12 IEEE SPC22 DaLiAPPG

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ↑
Combined (L) 9.30±0.10 16.50±0.20 77.60±0.43 10.27±0.37 19.62±0.71 44.10±0.89 27.41±4.73 31.26±4.55 18.12±3.86
w/o Prop. 2.1 12.69 (-3.39) 20.92 (-4.42) 71.01 (-6.59) 14.51 (-4.24) 25.30 (-5.68) 38.03 (-6.07) 18.71 (+4.7) 28.63 (+2.63) 31.13 (+10.0)
w/o Prop. 2.2 39.14 (-29.84) 46.01 (-29.51) 15.95 (-61.65) 39.71 (-29.56) 42.66 (-23.04) 0.771 (-43.32) 35.26 (-11.85) 40.13 (-8.87) 10.03 (-10.09)
Fourier 12.12 (-2.82) 20.09 (-4.59) 72.17 (-5.43) 14.83 (-4.56) 25.81 (-6.19) 35.15 (-8.95) 34.98 (-11.57) 47.13 (-15.87) 2.72 (-18.40)

of unsupervised and self-supervised learning methods (when
there is no label information), as a higher average SNR
indicates that relevant patterns, those related to downstream
tasks, are distinguishable from noise.

Second, we analyze the contribution and impact of each
proposed regularizer on model performance across vari-
ous datasets under different levels and types of noise. We,
therefore, trained the neural network models with the same
original implementation settings, i.e., the same architecture
and training hyperparameters, using the different combina-
tions of the loss components to analyze their contributions
separately. Specifically, we first train the models without
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Figure 4. The ablation experiments on the effect of each loss term
on the respiratory rate estimation Figure 4a and step counting Fig-
ure 4b tasks. The x and y axes of both figures represent the loss
combinations and corresponding error values for each task specific
metric, respectively. The error decreases significantly when the
model is trained using the combination of the proposed loss terms.
The error bars for the second part are ignored as the deviation
between random seeds is lower than 1–2% of the overall error.

maximizing periodicity and while ensuring the extracted
representations retain information to the original samples in
the desired frequency band, i.e., L1 = Lds + Lbw, without
maximizing the periodicity (w/o Proposition 2.1, the sec-
ond rows in Tables 5 and 6). Then, we train the models to
maximize the periodicity without forcing the extracted rep-
resentations to retain information from the original samples,

i.e., L2 = Lse + Lbw, without preventing the collapse (w/o
Proposition 2.2, the third rows in Tables 5 and 6). We also
add the bandwidth loss, a common practice in the literature,
to the loss variants for each case. The experimental results
for each dataset are presented in Tables 5 and 6 for heart
rate detection task from PPG and ECG signals, respectively,
and in Figure 4 for respiration and step counting tasks.

When the models are trained without maximizing the period-
icity in the extracted representations (w/o Proposition 2.1),
the performance of the models is similar to periodicity de-
tection using the Fourier transformation where the strongest
harmonic is detected from the frequency spectrum of sam-
ples. This behavior is expected since the applied regularizers
transform the model into a non-adaptive bandpass filter with
cut-off frequencies set according to the task. The combina-
tion of the proposed loss terms consistently performs well
in all tasks, especially when the models have sufficient ex-
amples with a high SNR to learn the underlying periodic
patterns of interest in the training set. However, when the
training data is noisy, i.e., the majority of the training set
includes samples with low SNR, where the desired patterns
are completely hidden, the Fourier transformation method
with bandpass performs well as can be seen in Table 5.

The results obtained from the ablation studies also support
the previous theoretical propositions and our motivation
for presenting a novel regularizer for preventing the de-
generate solution, i.e., the model collapse. For example, a
closer inspection of these results shows that when we train
the models without relating representations with samples
from which they originated, i.e., models that are trained
only using L1 (w/o Proposition 2.2), the models generally
performed the worst among the three variants of the combi-
nations, except for the ECG signals where the noise is less
significant compared to other signal types, i.e., the periodic
pattern of interest is more obvious. This observation con-
stitutes an empirical evidence for our proposed proposition,
where a learner, which is only trained to maximize peri-

Table 6. Ablation on proposed regularizers in ECG datasets for HR detection
Method PTB-XL DaLiAECG WESAD

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑
Combined (L) 3.75±0.02 13.58±0.03 79.30±0.17 1.29±0.001 2.08±0.01 99.12±0.01 2.13±0.01 3.88±0.06 93.52±0.61
w/o Prop. 2.1 14.29 (-10.54) 33.26 (-19.6) 42.04 (-37.26) 5.23 (-3.94) 16.84 (-14.76) 71.29 (-27.83) 5.09 (-2.96) 16.10 (-12.2) 62.15 (-31.3)
w/o Prop. 2.2 7.74 (-4.42) 21.82 (-8.24) 46.73 (-32.57) 2.93 (-1.64) 5.89 (-3.81) 92.90 (-6.22) 3.44 (-1.31) 5.39 (-1.51) 89.93 (-4.59)
Fourier 10.51 (-6.76) 28.65 (-15.07) 49.12 (-30.18) 4.06 (-2.77) 15.46 (-13.38) 73.73 (-25.39) 4.88 (-2.75) 18.57 (-14.69) 56.69 (-36.93)
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odicity in uniformly sampled time series within a specific
frequency band, can converge to a degenerate solution or
learn the random waveforms in the signal. Notably, this
degenerated model even fails to identify obvious and trivial
periodic patterns that can be detected by traditional rule
based Fourier transformation or autocorrelation methods.

More ablations about the sensitivity of loss terms can be
found in Appendix E.2. Investigations regarding the effect
of architectures in supervised learning methods are given
in Appendix E.3. Comparative results regarding the perfor-
mance of our approach with traditional methods that are
specifically tailored for the applications are given in Ap-
pendix E.4. Examples that visually demonstrate the learned
representations from samples can be found in Appendix F.
Appendix G provides a detailed evaluation and comparison
of the computational efficiency of our proposed method.

5. Related Work
Periodicity Detection Numerous studies have investi-
gated periodicity detection for several time series appli-
cations (Saul & Allen, 2000; Donoghue et al., 2020). De-
tecting the periodicity of physiological signals, such as heart
and respiratory rate, plays a pivotal role in understanding in-
dividuals’ health conditions (Penzel et al., 2003). Periodicity
detection also finds application in workload forecasting (Yu
et al., 2024), anomaly detection (Wen et al., 2021), and
voice/speech analysis (Saul & Allen, 2000). For instance,
it helps identify features like pitch and intonation, which
convey essential aspects of human communication, includ-
ing recognizing and understanding speech (Stevens, 2000).
Although current methods are valid in addressing specific
problems, a common characteristic is the development of
specialized tools tailored to particular issues with optimized
hyperparameters, i.e., several thresholds (Wen et al., 2021),
often lacking generalized solutions under noisy data (Saul
& Allen, 2000). Moreover, if there are two periodicities in
the interested frequency bandwidth (i.e., noise and pattern
of interest), these methods will fail to detect the desired one
as they lack the adaptability to learn to distinguish between
multiple periodic patterns (Wen et al., 2023). In contrast, our
proposed method, which is adaptive and learns the desired
pattern from the data in an unsupervised way, can detect
periodicity across various conditions in three time series
tasks without requiring labels for training or task-specific
data augmentations with parameter optimizations.

Unsupervised Learning Self-supervised learning meth-
ods have gained significant attention as they enable the dis-
covery of useful representations from data without labels by
designing pretext tasks that change the unsupervised learn-
ing problem into a supervised one such as predicting the ro-
tation of images (Gidaris et al., 2018), or contexts (Doersch

et al., 2015; Pathak et al., 2016). Recently, SSL techniques,
particularly in the vision domain, have been explored for pe-
riodicity detection from the sequence of frames (Yang et al.,
2023; Wang et al., 2022a). Most of these methods (Yang
et al., 2023; Gideon & Stent, 2021) generate similar and
dissimilar (positive/negative) pairs by applying tailored aug-
mentations and learn periodic representations with slight
modifications to the InfoNCE loss (van den Oord et al.,
2018). However, these approaches do not consider the chal-
lenges posed by noisy non-stationary time series data where
signals may exhibit multiple periodicities in the interested
bandwidth under significant noise (Temko, 2017). More-
over, the usage of augmentations, in such cases, can be
prone to issues like spectrum overlap, i.e., aliasing, resulting
in the loss of information (Oppenheim & Schafer, 2009).

Recent approaches have used regularizers to prevent col-
lapse issue by penalizing the model when it produces similar
embeddings within a batch (Speth et al., 2023) instead of
using similar/dissimilar samples as in contrastive learning.
For example, VICReg applies the hinge loss on the variance
over a batch of predictions to enforce diverse representa-
tions/outputs (Bardes et al., 2022). However, having diverse
samples in a batch is an overly optimistic claim, because
during self-supervised training, where there is no label infor-
mation available to the learners, this regularizer may punish
the models for learning correct representations. Even worse,
the model might learn the noisy patterns to satisfy the ar-
bitrarily set variance constraint in a batch. Therefore, we
take a different approach and introduce a new method to
prevent the model collapse by ensuring the representations
retain information from the original samples. In other words,
our approach hypothesizes that each representation should
maintain a trace of the sample from which it is derived.

6. Conclusion
In this paper, we proposed a set of regularizers for detecting
desired periodic patterns in time series sequences without
requiring any label information or specialized data augmen-
tation techniques. Theoretically, we proved that an opti-
mized learner trained with the proposed loss will detect the
periodic pattern in the sequence while preventing degenerate
solutions. In contrast to previous methods that rely on opti-
mistic assumptions on batch statistics to prevent the collapse
of unsupervised models, we presented a novel approach that
guarantees representations to preserve information from the
original samples, thus relaxing assumptions on the batch.
Empirically, we showed that our method outperforms the
prior works, achieving significant performance gains of up
to 40–45%, in three real-world tasks that involve diverse
noisy conditions. We believe that the methods introduced in
this work have the potential to significantly improve learning
solutions for a wide variety of time series tasks.
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Impact Statement
This paper aims to advance machine learning by introduc-
ing a new method for detecting periodic patterns in noisy
time series data without relying on labeled data. Since our
method operates in an unsupervised manner, it can lever-
age vast amounts of unlabeled data commonly generated in
everyday life. This characteristic underscores its potential
for real-world deployment, tapping into the rich resource of
naturally occurring time series data for applications such as
health monitoring, behavior analysis, and beyond.
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A. Proof
In this section, we present complete proofs of our theoretical study, starting with notations.

A.1. Notations and Preliminaries

Fourier transform of a real-valued sample with a finite duration is obtained as in Equation 12.

F(x) =

∞∑
n=−∞

xne
−j2πkn (12)

The absolute frequency spectra of the samples are calculated as below.

SX(w) =

∣∣∣∣∣∑
n

xne
−jωn

∣∣∣∣∣
2

, where ω = 2πf and f ∈ [0, fs/2] (13)

We applied probability normalization to the obtained spectra for both original samples and the extracted representations in
the desired frequency as in below before calculating the entropy and divergence.

SX(ω∗) =
SX(ω∗)∑
ω∗ SX(ω∗)

, where ω∗ ∈ [0, 2πfs/2]

H(SX) =
∑
ω

SX(ω∗) log
SX(ω∗)

SX(ω∗)

(14)

The autocorrelation of a real-valued signal with time shift τ is calculated as in Equation 15, where the denominator is the
sample variance of the time series in that segment.

RXX(τ) =

∑N−τ
n=1 (xn − µx)(xn+τ − µx)∑N

n=1(xn − µx)2
(15)

We also used the Wiener-Khintchine (Wiener, 1930; Khintchine, 1934) theorem for calculating the spectral density of the
sample x from the autocorrelation as in Equation 16.

S(ω) =
∑
τ

RXX(τ)e−jωτ (16)

Similarly, as the time series samples are absolutely summable in our case, the autocorrelation can be obtained as in below.

RXX(τ) =
1

2π

∫ π

−π

S(ω)ejτωd(ω) (17)

Since the spectral density is periodic in the frequency domain, the summation is performed over one period.
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A.2. Proof for Proposition 2.1

Proposition A.1 (Maximizing periodicity). Minimizing the spectral entropy of sequential data is nothing but maximizing its
periodicity in the time domain.

θ∗ = argmin
θ

Lse = argmax
θ

I(y;x),

where Lse = −
∑
w

Sfθ (w) logSfθ (w),

Sfθ (w) =
Sfθ (w)∑
w Sfθ (w)

, Sfθ (w) =

∣∣∣∣∣∑
n

fθ(x)ne
−jωn

∣∣∣∣∣
2

(18)

Proof. The spectral entropy is maximum (periodicity is minimum) when the sequence generation process is a Gaussian with
zero mean, σ2 variance, i.e., W (t) ∼ N (0, σ2

w).

E[W (t)] = 0, RWW (τ) = E[W (t+ τ)W ∗(t)]

For samples drawn from the Gaussian process, the correlation is non-zero only when τ = 0 (as they are independent), and it
is equal to the variance of the distribution. So;

RWW (τ) =

{
σ2
w, if τ = 0

0, if τ ̸= 0
−→ RWW (τ) = σ2

wδ(τ) (19)

Using the Wiener-Khintchine theorem in Equation 16,

SW (ω) =
∑
τ

σ2
wδ(τ)e

−jωτ (20)

SW (ω) =

{
σ2
w, if ω ∈ (−π, π)

0, otherwise
(21)

In the last part of the above equation, the single period of the spectra in the frequency domain is considered for all samples.
When we apply the probability normalization to the obtained spectra in the desired frequency band,

SW (ω) =
1

b− a
where ω ∈ [a, b] ⊂ (−π, π) (22)

The obtained spectrum from the Gaussian process is nothing but the uniform distribution in the interested frequency band. It
is known that the Entropy is maximized if the distribution is uniform, therefore;

H(SW ) ≥ H(SX),∀x ∈ X (23)

The spectral entropy is minimum if the sequence generation process is periodic, i.e., RPP (τ) = RPP (τ + T ). Since the
RPP (τ) is periodic with T, it can be expressed as a linear combination of harmonically related complex exponentials (Op-
penheim et al., 1996), which is also referred to as the Fourier series representation.

RPP (τ) =

∞∑
n=−∞

αne
jω0nτ , ω0 =

2π

T
(24)

αn =
1

T

∫ T/2

−T/2

RPP (τ)e
−jω0nτdτ (25)

Using the Wiener-Khintchine theorem in Equation 16, we can write the spectrum density as follows;

SP (w) =
∑
τ

RPP (τ)e
−j2πτn (26)

SP (w) =
∑
τ

∑
n

αne
jω0nτe−jωτ (27)

SP (w) =
∑
n

∑
τ

αne
−jτ(ω−ω0n) (28)
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Using the orthogonality of complex exponentials, we can write the above equation as follows,

SP (w) =

{
2π

∑
n αn, for ω = ω0n

0, for ω ̸= ω0n
−→ SP (w) = 2π

∞∑
n−∞

αnδ(ω − nω0), (29)

where the 2π comes from the single period (−π, π) summation of the autocorrelation. When we apply the probability
normalization to the obtained spectra in the desired frequency band while converting the discrete-time Fourier transform to
the discrete Fourier transform*, we can obtain the following.

SP (w) = δ(ω − ω0) where ω ∈ [a, b] ⊂ (0, π) (30)

When we consider the positive frequencies, the normalized spectra will contain an impulse at the frequency of the periodicity,
which is the case for minimum entropy.

H(SP ) ≤ H(SX),∀x ∈ X (31)

Combining Equation 23 and the above,
H(SP ) ≤ H(SX) ≤ H(SW ) (32)

Therefore, H(SP ) ≤ Lse ≤ H(SW ).

The last inequality concludes the proof by showing that minimizing the spectral entropy of uniformly sampled time series
data is equivalent to maximizing its periodicity.

A.3. Proof for Proposition 2.2

Proposition A.2 (Degenerate solution). The relative entropy between the spectral distributions of samples and extracted
representations is upper-bounded by a degenerate solution.

DKL(P ∥ Q) > Lds ≥ 0, where Var(Q) = 0,

and Lds =
∑
ω

SX(ω) log
SX(ω)

Sfθ (ω)
,

SX(ω) =
SX(ω)∑
ω SX(ω)

, SX(ω) =

∣∣∣∣∣∑
n

xne
−jωn

∣∣∣∣∣
2

(33)

Proof. From Equation 30, we can say that a learner, which is trained to maximize the periodicity, will output representations
(fθ(x)) that have spectra as in below.

Sfθ (ω) = δ(ω − ω0) (34)

Nevertheless, this leads to an informational collapse, resulting in a degenerate solution where representations become
identical, despite the maximum periodicity present. In other words, if the distribution of representations is defined as Q, the
variance will be zero, i.e., Var(Q) = 0. Therefore,

∃ω ∈ (−∞,∞), Sfθ (ω) = 0 ∧ SX(ω) ̸= 0, (35)

And,

DKL(SX(ω) ∥ Sfθ (ω)) =
∑
ω

SX(ω) log
SX(ω)

Sfθ (ω)
→ ∞ (36)

Thus,

DKL(P ∥ Q) ≥ Lse ≥ 0 (37)

The proof suggests that degenerate solutions can be prevented if the learner seeks to minimize the relative entropy between
the spectra of samples and extracted representations.

*The Fourier transform is sampled at N equally spaced frequencies (Oppenheim et al., 1996).
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B. Datasets
In this section, we give details about the datasets that are used during our experiments.

B.1. Heart rate

B.1.1. ECG BASED

PTB-XL The PTB-XL ECG is a large dataset of 21799 clinical 12-lead ECGs, where lead-II was used during experiments,
from 18869 patients of 10-second length segments. The dataset itself provides recommended splits into training and test
sets. We, therefore, follow the exact recommendation. ten percent of the training training set is used as fine-tuning for
self-supervised learning techniques.

DaLiaECG PPG dataset for motion compensation and heart rate estimation in Daily Life Activities (DaLia) was recorded
from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording was approximately two hours long. The
signals were recorded while subjects went through different daily life activities, for instance sitting, walking, driving, cycling,
working, and so on. ECG signals were recorded at a sampling rate of 700 Hz. We follow leave-one-out-cross-validation for
each subject. For the self-supervised setting, we used the first five subjects for fine-tuning.

WESAD The multimodal WESAD data set includes physiological and mobility data from wrist-worn (Empatica E4) and
chest-worn (RespiBAN) devices. Data were acquired from 15 subjects and contain multiple features, pulse rate, ECG, and
body temperature, as extracted from a wrist-worn device, and blood volume pulse (BVP) and respiration extracted by the
chest-worn devices (Schmidt et al., 2018). We evaluate the dataset using leave-one-subject-out.

ECG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter with a frequency range of
0.7–40 Hz is applied to the signals. In the case of DaLia and WESAD, we use an 8-second sliding window with 2-second
shifts for segmentation. Differently, for PTB-XL, the ECG segments are pre-provided. After segmentation, we calculated the
square of the first differentiation before feeding samples to the models, which helps to emphasize beats (Pan & Tompkins,
1985). Lastly, the signals are normalized to zero to one range.

B.1.2. PPG BASED

IEEE SPC This competition provided a training dataset of 12 subjects (SPC12) and a test dataset of 10 subjects (Reiss
et al., 2019). The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging from 18 to 58 performing three
different activities (Rocha et al., 2020). Each recording has sampled data from three accelerometer signals and two PPG
signals along with a sampling frequency of 125 Hz. All these recordings were recorded from the wearable device placed on
the wrist of each individual. All recordings were captured with a 2-channel pulse oximeter with green LEDs, a tri-axial
accelerometer, and a chest ECG for the ground-truth HR estimation. During our experiments, we used PPG channels. We
use leave-one-out-cross-validation for the SPC12 and SPC22 as source domains similar to the previous setup while the last
six subjects of SPC22 are used for source domains to prevent overlapping subjects with SPC12, similar to (Demirel & Holz,
2023).

DaLiaPPG PPG signals from the DaLia dataset were recorded at a sampling rate of 64 Hz. The first five subjects are used
as target domains with leave-one-out-cross-validation, following the (Demirel & Holz, 2023).

All PPG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter with a frequency range
of 0.5–4 Hz is applied to PPG signals. Subsequently, a sliding window of 8 seconds with 2-second shifts is employed for
segmentation, followed by z-score normalization of each segment. Lastly, the signal is resampled to a frequency of 25 Hz
for each segment.

B.2. Respiratory rate

CapnoBase The CapnoBase dataset includes recordings of ECG and PPG along with capnometry signals from 42 subjects
(13 adults, 29 children, and neonates). The dataset also includes the inhaled and exhaled carbon dioxide (CO2) signal
labeled by the research assistance (Karlen et al., 2013) and used as the reference breathing rate. The dataset is split into 10
folds where each fold contains four subjects. The last five fold is used as the test set for all baselines. For the self-supervised
learning, we used seven fold for pre-training and ten percent of the pre-training for fine-tuning.
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BIDMC The BIDMC dataset consists of ECG, pulse oximetry (PPG), and impedance pneumography respiratory signals.
The data was acquired by randomly selecting critically ill patients undergoing hospital care at the Beth Israel Deaconess
Medical Centre (Boston, MA, USA). Two trained annotators manually annotated individual breaths in each recording using
the respiratory impedance signal. The data set contains 8-minute recordings of ECG, PPG, and impedance pneumography
signals from 52 adult patients aged from 19 to older than 90, including 32 females (Pimentel et al., 2017). For each set of
annotations, the RR value was determined based on the average time between consecutive breaths within a given window;
only those windows of data for which the agreement between both estimates was within 2 breaths per minute were retained.
We used 10-fold cross-validation for the evaluation where each fold contains 5 subjects. For the self-supervised learning, we
used seven fold for pre-training and ten percent of the pre-training for fine-tuning.

B.3. Step counting

Clemson The Clemson dataset has 30 participants, including 15 males and 15 females. Each participant wore three
Shimmer3 sensors. We use the data from the device which is positioned on the non-dominant wrist. The inertial measurement
data is recorded at 15 Hz. The accelerometers were set to record from -2 to 2 gravities. We computed the overall magnitude
of the accelerometer and used it as input to the models. We used the regular gait experiment, where the participant was
instructed to walk two laps around a designated path at their normal walking pace. In the semi-regular gait experiment,
participants were instructed to perform a scavenger hunt, locating four objects in four different rooms throughout a
building (Mattfeld et al., 2017). We used 10-fold cross-validation for the evaluation where each fold contains 3 subjects. For
the self-supervised learning, we used seven fold for pre-training and two fold for fine-tuning.

When we split the datasets for training and testing folds, we ensure that each person’s recordings appear in only one set. We
followed this procedure across all datasets to ensure that the trained model had not seen the testing data during training.

B.4. Metrics

We used the common evaluation metrics in the literature for each task. Specifically, we used mean absolute error (MAE),
root mean square error (RMSE), and Pearson correlation coefficient for heart rate prediction (Speth et al., 2023), and we
used the mean absolute percentage error (MAPE) for step counting (Yang et al., 2020; Femiano et al., 2022).

Here, we explain how to calculate each metric for different time series tasks. The MAE, RMSE, and correlation coefficient
(ρ) are calculated using the following equations:

MAE =
1

n

n∑
i=1

|ŷi − yi| (38)

RMSE =

√∑n
n=1(ŷi − yi)2

K
(39)

ρ =

∑n
i=1(ŷi − µŷ)(yi − µy)√∑n

i=1(ŷi − µŷ)2
√∑n

i=1(yi − µy)2
(40)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣% (41)

where n represents the total number of segments. The variables ŷi and yi denote the output of the model and ground truth
values in beats (respiration)-per-minute or number of steps for the nth segment, respectively. We reported the percentage for
the Pearson correlation coefficient to save precision in the tables.
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C. Baselines
C.1. Traditional-Heuristic based methods

Fourier transform We calculated the Fourier transform of signals and found the maximum amplitude sinusoidal from it
to detect the periodicity. The length of transformation is set to 2048 for ECG signals and 512 for the rest. The frequency
range of interest is defined according to common physiological limits for each task: [5, 40] rpm for respiration rate, [40,
140] for step counts per minute, and [30, 210] bpm for heart rate. We increased the length of the Fourier transform for ECG
signals as their sampling frequency is approximately four times higher than the other signals. During the loss calculation of
our proposed method, we use the same hyperparameters, frequency range of interests with length, of Fourier transformation.

Autocorrelation Similar to the Fourier-based method, we calculate the autocorrelation, as in Equation 42, of the signals
and find the maximum value of yk in the range of frequency of interest.

yk =

∑n
t=k+1(xt − µx)(xt−k − µx)∑n

t=1(xt − µx)2
(42)

RobustPeriod RobustPeriod adopts maximal overlap discrete wavelet transform (MODWT) to decompose the input time
series into multiple time series at different levels, ranks by wavelet variance, and then performs Huber periodogram with
autocorrelation. We used Daubechies 10 wavelet with 4 levels, the lambda in the Hodrick–Prescott (HP) filter is set to
1e6, the Huber function hyperparameter is set to 2, and the M-Periodogram is set to 1.345. Although we searched for the
optimum hyperparameters, the search space was limited due to the significant time consumption arising from the wavelet
computation and optimization for each sample, given the numerous hyperparameters involved in the technique. Since
this method includes autocorrelation to detect periodicity at each scale after the wavelet decomposition, the performance
decreases severely when the desired period of interest is hidden by other periodic patterns in the same frequency band.

C.2. Supervised

DCL We used a similar implementation of DeepConvLSTM architecture which is a 4-layer convolutional neural network
with a kernel size of five, and ReLU activation after each layer, followed by a Dropout (Srivastava et al., 2014) and a
two-layer LSTM with a hidden size being 128. We chose this architecture for the supervised and self-supervised learning
paradigms as it was widely used before in the literature (Qian et al., 2022; Demirel & Holz, 2023), especially for detecting
the periodicities in the supervised paradigm from signals (Biswas et al., 2019).

CNN We also implemented a fully convolutional neural network with a 3-layer followed by ReLU activation and
MaxPooling after each convolutional layer. Dropout with 0.5 is applied after the first convolutional layer. We set the kernel
and padding size to 8 and 4, respectively for each convolutional layer. The number of kernels for each convolutional layer is
set to 32 for the first one and 64 for the rest.

We also performed a grid search for the hyperparameters of the architectures where we mainly investigated the number
of convolutional layers with the kernel size. However, we did not observe a performance improvement with the increased
number of parameters for the architectures as shown with the additional results in Appendix E.3.

C.3. Self-Supervised

NNCLR We follow a similar setup to SimCLR by applying two separate data augmentations, then we use nearest neighbors
in the learned representation space as the positive in contrastive losses (Dwibedi et al., 2021). The maximum size of the
support set equals 1024.

BYOL For the BYOL implementation, the exponential moving average parameter is set to 0.996 where the projector size
is set to 128. We set the learning rate to 0.03 similar to other SSL techniques. Following the original implementation, we
use a weight decay parameter of 1.5e− 6.

TS-TCC We follow the same architecture implementation with the losses, i.e., contextual and temporal contrasting.
TS-TCC proposed applying two separate augmentations, one augmentation is weak (jitter-and-scale) and the other is strong

20



An Unsupervised Approach for Periodic Source Detection in Time Series

(permutation-and-jitter). The authors also change the strength of the permutation window from dataset to dataset. In our
experiments, we first used the original augmentations for each time series task, however, we observed performance decreases
depending on the signal type. We, therefore, applied the specific augmentations for each time series, where we observed a
general performance improvement in other SSL techniques as well.

TS2Vec TS2Vec (Yue et al., 2022) is a SSL method specifically designed for time series based on contrastive (instance
and temporal wise) learning in a hierarchical way over augmented context views where the context is generated by applying
timestamp masking and random cropping on the input time series. Following the original framework, we use a dilated CNN
architecture with a depth of 10 and hidden size of 64, which has a similar number of parameters with the architectures used
by other SSL methods. The batch size is set to 256, and the number of epochs to 120, consistent with other SSL techniques.

VICReg We follow the original implementation and set the coefficients for each loss term to 25 (λ), 25 (µ), and 1 (ν),
corresponding to the invariance, variance, and covariance terms, respectively. Although we conducted a search for these loss
term values, no performance enhancements were detected across the tasks.

ℓ = λ [s(z, z′)] + µ [v(z) + v(z′)] + ν [c(z) + c(z′)] , (43)

where s is the mean-squared Euclidean distance, v is a hinge function on the standard deviation of the embeddings along the
batch dimension, c is the covariance regularization term as the sum of the squared off-diagonal coefficients

Barlow Twins Barlow Twins (Zbontar et al., 2021; Barlow, 2001) presents an objective function that naturally avoids
collapse for SSL by measuring the cross-correlation matrix between the outputs of two identical networks fed with
augmented versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding
vectors of augmented versions of a sample to be similar, while minimizing the redundancy between the components of these
vectors. Following the original implementation, we applied batch normalization to the extracted embeddings and set the
hyperparameter λ coefficient (in Equation 44) to 0.005.

L =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij , (44)

where C is the cross-correlation matrix computed between the two sets of normalized embeddings.

SimPer SimPer is a simple contrastive self-supervised technique for learning periodic information in data. To exploit the
periodic inductive bias, SimPer introduces customized augmentations and feature similarity measures. We follow the same
augmentation in the original paper, and we downsample or interpolate the signals, which the authors call speed change. The
range and the number of periodicity variant frequency augmentation are searched over [0.5, 3] and [3, 20], respectively, as in
the original paper. We use the MXCorr for the similarity metric. Although the objective of the SimPer is the same as our
work, the performance is extremely poor in all tasks and datasets compared to our proposed method even though the SimPer
requires labels for training.

C.4. No supervision

SiNC The three loss terms (bandwidth, sparsity, variance) with equal weights are implemented for signal estimation via
the non-contrastive unsupervised learning (SiNC) technique. However, we adapted these limits individually for each task,
following the specific frequency boundaries outlined in the Fourier transform.
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D. Implementation Details
Here, we have provided the details of the searched architectures, hyperparameters, and data augmentations to push the
performance of the supervised and self-supervised techniques. To begin, we considered the model topologies that were used
in previous works (Demirel & Holz, 2023; Qian et al., 2022; Biswas et al., 2019) and expanded upon them. We also evaluate
the 1D Res-Net (Hong et al., 2020) implementation; however, we observe no significant performance improvement across
datasets. This aligns with findings from previous works indicating that complex models may perform worse for time series
data (He et al., 2023).

D.1. Architectures

Here, we present the details of architectures that are investigated for the performance of learning-based algorithms. Mainly,
we consider the baselines in the literature and increase the number of parameters approximately four times to observe if the
performance increases. Batch normalization (Ioffe & Szegedy, 2015) is applied after each convolutional block, except the
first version of DCL, similar to (Qian et al., 2022). ReLU activation is employed following batch normalization, in line
with (He et al., 2016), with the exception of the final activation function in the U-Net, which is set to hyperbolic tangent.
The number of parameters for each model is calculated for an input with 200 dimensions, i.e., a segment of the PPG signal.

Table 7. The model topologies for the combination of convolutional with LSTM-based networks. Table 7a) is the baseline architecture
from previous works. Table 7b) is a similar model with ≈ 2x parameters.

(a) DeepConvLSTM Architecture

Layer Kernel
Size

Output
Size

Input (1 channel) - (T, 1)
Conv (64 kernels) (5, 1) (T-4, 64)
Conv (64 kernels) (5, 1) (T-8, 64)
Conv (64 kernels) (5, 1) (T-12, 64)
Conv (64 kernels) (5, 1) (T-16, 64)
Permute + Reshape - (64, T-16)
Dropout (p=0.5) - (64, T-16)
LSTM (2 layers, 128 units) - (128, T-16)
Output (if backbone) - (128,)
Linear (if not backbone) - (n classes,)

# Parameters ≈316k

(b) DeepConvLSTM v2 Architecture

Layer Kernel
Size

Output
Size

Input (1 channel) - (T, 1)
Conv (64 kernels) (7, 1) (T-2, 64)
Conv (128 kernels) (5, 1) (T-4, 128)
Conv (128 kernels) (5, 1) (T-8, 128)
Conv (256 kernels) (5, 1) (T-10, 256)
Permute + Reshape - (256, T-10)
Dropout (p=0.5) - (256, T-10)
LSTM (2 layers, 128 units) - (128, T-10)
Output (if backbone) - (128,)
Linear (if not backbone) - (n classes,)

# Parameters ≈494k
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Table 8. The model topologies for the fully convolutional neural networks. Table 8a) is the baseline architecture from previous works.
Table 8b) is a similar model with ≈ 1.5x parameters.

(a) FCN Architecture

Layer Kernel
Size

Output
Size

Input (1 channel) - (T, 1)
Conv (32 kernels) (8, 1) (T, 32)
MaxPool (2, 1) (T/2, 32)
Dropout (p=0.2) - (T/2, 32)
Conv (64 kernels) (8, 1) (T/2, 64)
MaxPool (2, 1) (T/4, 64)
Conv (128 kernels) (8, 1) (T/4, 128)
MaxPool (2, 1) (T/8, 128)
Output (if backbone) - (128,)
Linear (if not backbone) - (n classes,)

# Parameters ≈700k

(b) FCN v2 Architecture

Layer Kernel
Size

Output
Size

Input (1 channel) - (T, 1)
Conv (32 kernels) (8, 1) (T, 32)
Conv (32 kernels) (8, 1) (T, 32)
MaxPool (2,1) (T/2, 32)
Dropout (p=0.2) - (T/2, 32)
Conv (64 kernels) (6, 1) (T/2, 64)
Conv (64 kernels) (6, 1) (T/2, 64)
MaxPool (2,1) (T/4, 64)
Conv (128 kernels) (4, 1) (T/4, 128)
Conv (128 kernels) (4, 1) (T/4, 128)
MaxPool (2, 1) (T/8, 128)
Output (if backbone) - (128,)
Linear (if not backbone) - (n classes,)

# Parameters ≈905k

Table 9. 1D U-Net Architecture
Layer Kernel Size Output Size Input to Layer

Input - (T, 1) —
AvgPool1 (2,1) (T/2, 1) Input
AvgPool2 (4.1) (T/4, 1) Input
Conv1D (3, 1) (T, 32) Input
Conv1D1 (down) (3, 1) (T/2, 64) Conv1D
Conv1D2 (down) (3, 1) (T/4, 96) concat[Conv1D1, AvgPool1]
Conv1D3 (down) (3, 1) (T/8, 128) concat[Conv1D2, AvgPool2]
Upsample1 (2, 1) (T/4, 128) Conv1D3

Conv1D4 (up) (3, 1) (T/4, 96) concat[Upsample1, Conv1D2]
Upsample2 (2, 1) (T/2, 96) Conv1D4

Conv1D5 (up) (3, 1) (T/4, 64) concat[Upsample2, Conv1D1]
Upsample3 (2, 1) (T, 64) Conv1D5

Conv1D6 (up) (3, 1) (T, 32) concat[Upsample3, Conv1D]
Out Conv (3, 1) (T, 1) Conv1D6

# Parameters ≈355k
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D.2. Augmentations

In this section, we give details about the data augmentations that are applied to the time series tasks. During our experiments,
we searched for the best traditional augmentation technique for a given task. We searched over common time series
augmentation methods in literature (Table 10), and applied them with self-supervised learning baselines.

Specifically, we applied scaling for ECG and IMU signals to detect heart rate and step counting, permutation with noise for
HR detection from PPG signals. scaling and permutation with noise for respiratory rate from PPG. We also observed that
while permutation enhances the performance of PPG signals, it significantly diminishes the performance of ECG signals.

Table 10. Common time series augmentations

Augmentation Details

Noise Add Gaussian noise sampled from normal distribution, N (0, 0.3)

Scale Amplify channels by a random distortion sampled from normal distribution N (2, 1.1)

Negate Multiply the value of the signal by a factor of -1

Permute
Split signals into no more than 5 segments, then permute the segments

and combine them into the original shape

Resample
Interpolate the time series to 3 times its original sampling rate

and randomly down-sample to its initial dimensions

Time Flip Flip the time series in time for all channels, i.e., xAug[n] = x[−n]

Random Zero Out Randomly choose a section to zero out (at most 1/10 of the signal)

Permutation + Noise Combination of Permutation and Noise with the noted parameters

Noise + Scale Combination of Noise and Scaling

SimPer applies interpolation and decimation to change the periodicity of the sample as augmentations. We limit the
speed change—the term authors used for resampling the short and long samples—range to be within [0.5, 2], ensuring the
augmented sequence is longer or shorter than a fixed length in the time dimension, following the same implementation in
the paper.
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E. Additonal Results
E.1. BIDMC dataset

The BIDMC dataset exhibits a significant imbalance (Pimentel et al., 2017), leading self-supervised and supervised learning
techniques to essentially leverage the training data statistics, particularly the mean output, during inference. We, therefore,
only report the heuristic and unsupervised learning-based methods in Table 11. As seen in Table 11, our proposed method

Table 11. Comparison of methods in Respiration for BIDMC

Method BIDMC (64-second) BIDMC (32-second)

MAE↓ RMSE↓ MAE↓ RMSE↓
Heuristic
Fourier 4.081 4.962 5.71 7.25
Autocorrelation 14.05 16.23 14.36 16.64
RobustPeriod 10.84 13.36 10.02 12.79
No Supervision
SiNC 4.11±0.10 5.44±0.31 6.01±0.98 7.33±0.92
Ours 3.40±0.20 4.41±0.43 3.74±0.03 4.77±0.12

demonstrates a significant performance improvement over the baselines. Furthermore, the performance gap between our
method and another deep learning solution, SiNC, exceeds 25%.

E.2. The effect of loss weights

In this section, we investigate the effect of loss weights. During our experiments, we give the same importance to each
regularizer, i.e., the coefficients (λ, ν) in Equation 45 are set to 1.

L = −λ
∑
f∗

S(ω) logS(ω) + ν
∑
f∗

SX(ω) log
SX(ω)

S(ω)
+

∑
f ′

S(ω), ω = 2πf and f
′
= U \ f∗ (45)

We observed the effect of two coefficients on the performance by setting them to discrete values of {0.5, 1.0, 1.5, 2.0},
independently. The below figures present the results for two different signals, including electrocardiogram and photoplethys-
mography. It is evident from these figures that the optimal performance is achieved when the weights for both losses are
balanced, rather than assigning greater importance to one over the other. Moreover, a closer inspection of these figures
reveals an important outcome regarding the losses. When the models are trained while giving more importance to decreasing
spectral entropy (λ) rather than keeping the relative entropy between input and output close (ν), they collapse. This is
noticeable when examining the blue line—increasing the importance of periodicity with the same weight for the other
loss—the model error increases significantly.
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Figure 5. The three error metrics–—mean absolute error (MAE), root mean square error (RMSE), and correlation—–provided in the
SPC12 dataset are used to evaluate the sensitivity of loss weights on the overall performance.

Moreover, this effect is more pronounced with the datasets that include more noisy samples. For example, the mean absolute
error increases by twice when more weight is given to periodicity as in Figure 6.
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Figure 6. The three error metrics–—mean absolute error (MAE), root mean square error (RMSE), and correlation—–provided in the
SPC22 dataset are used to evaluate the sensitivity of loss weights on the overall performance.
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Figure 7. The three error metrics–—mean absolute error (MAE), root mean square error (RMSE), and correlation—–provided in the
PTB-XL dataset are used to evaluate the sensitivity of loss weights on the overall performance.

When investigating the model performance with varying loss weights on two signals, we can see the different behavior of
the model. Specifically, in less noisy signal segments such as ECG, increasing the importance of the periodicity loss does
not lead to substantial performance declines when compared with PPG signals. This phenomenon can be attributed to the
distinct and clear periodic patterns, such as QRS complexes, present in the ECG signal. In contrast, the periodicity in blood
volume changes is less apparent, hidden beneath higher noise levels, leading the model to capture more noise rather than the
desired periodicity when the weights are imbalanced.

E.3. The effect of architectures

Here, we present the performances of the baseline architectures that are explicitly given in Appendix D for each dataset to
investigate the effect of model capacity on generalization. An interesting result from these tables is that even though the
number of parameters increases for architectures, the overall performance decreases for some datasets. For example, the
second version of the fully convolutional neural network has roughly twice the number of parameters when compared with
DCL. However, it performs worse than the DCL in cases such as PTB-XL and DaLiA. Although we applied this architecture
search for the self-supervised learning paradigm as well, we have not observed a performance change across datasets.

Table 12. Performance comparison of ours with other methods in ECG datasets for HR detection

Method PTB-XL DaLiAECG WESAD

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑
Supervised
DCL 6.08±0.78 14.23± 1.43 76.40±6.02 3.91±0.37 6.96±1.06 91.42±2.5 9.14±0.78 7.23±0.75 85.44±6.32
DCLv2 5.65±0.19 18.13± 1.31 66.22±0.79 2.41±0.06 4.91±0.10 95.64±0.13 2.80±0.09 4.49±0.11 95.13±0.59
CNN 9.09±0.27 16.37±0.33 66.11±1.75 5.39±0.16 8.36±0.15 89.44±0.72 10.69±0.67 13.57±1.01 50.10±12.5
CNNv2 7.50±0.45 17.36±1.13 62.13±5.90 4.02±0.15 6.95±0.37 91.87±1.01 4.98±0.06 7.27±0.19 87.98±0.66
U-Net 11.36±0.50 19.33±0.70 62.44±2.56 4.72±0.03 10.88±0.07 80.76±0.10 5.39±0.02 7.75±0.06 87.77±0.31

No Supervision
Ours 3.75±0.02 13.58±0.03 79.30±0.17 1.29±0.001 2.08±0.01 99.12±0.01 2.13±0.01 3.88±0.06 93.52±0.61
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Table 13. Comparison of methods in Step counting

Method Clemson (Regular) Clemson (Semi-regular)

MAPE↓ MAE↓ MAPE↓ MAE↓
Supervised
DCL 5.99±0.34 3.45±0.32 19.59±1.54 8.98±0.87
DCLv2 5.64±0.59 3.23±0.33 18.73±0.54 7.90±0.35
FCN 6.15±0.60 3.53±0.33 17.22±0.31 6.98±0.23
FCNv2 5.97±0.26 3.48±0.15 15.24±0.57 6.44±0.28
U-Net 6.24±0.53 3.62±0.32 16.83±0.45 7.71±0.26

No Supervision
Ours 5.95±0.21 3.42±0.17 35.18±0.02 14.21±0.97

Table 14. Comparison of methods in Respiration

Method CapnoBase (64-second) CapnoBase (32-second)

MAE↓ RMSE↓ MAE↓ RMSE↓
Supervised
DCL 5.76±0.28 7.45±0.27 5.74±0.08 7.68±0.07
DCLv2 6.28±0.37 8.61±0.71 6.30±0.80 8.71±1.04
FCN 6.00±0.20 8.15±0.28 5.41±0.24 7.57±0.40
FCNv2 5.49±0.21 7.65±0.38 5.63±0.60 7.73±0.70
U-Net 5.49±0.21 7.65±0.38 5.63±0.60 7.73±0.70

No Supervision
Ours 3.40±0.20 4.41±0.43 3.74±0.03 4.77±0.12

Table 15. Performance comparison of supervised methods with different architectures in PPG datasets for HR estimation

Method IEEE SPC12 IEEE SPC22 DaLiAPPG

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ↑
Supervised
DCL 19.90±1.10 26.34±1.10 25.53±4.2 22.43±0.62 27.17±0.60 11.95±5.1 5.97±0.19 11.83±0.36 80.41±0.9
DCLv2 11.05±0.08 14.64±0.10 77.40±0.71 18.89±0.44 22.89±0.26 09.90±5.1 5.66±0.06 11.29±0.21 81.99±0.46
CNN 12.48±0.23 18.19±0.26 68.08±1.85 17.97±0.33 23.06±0.36 21.91±1.76 7.35±0.14 13.74±0.26 74.22±0.55
CNNv2 12.10±0.22 18.19±0.26 68.08±1.85 18.12±0.37 22.90±0.39 19.83±3.14 6.89±0.02 13.02±0.12 76.60±0.31
U-Net 18.40±0.79 25.06±1.05 39.53±4.76 25.86±0.75 31.45±0.83 06.74±1.76 8.70±0.21 16.76±0.34 65.61±1.11

No Supervision
Ours 9.30±0.10 16.50±0.20 77.60±0.43 10.27±0.37 19.62±0.71 44.10±0.89 27.41±4.73 31.26±4.55 18.12±3.86

E.4. Comparison with additional traditional methods

Here, we compared our approach with a traditional wavelet-based method (Martinez et al., 2004) specifically designed for
detecting the QRS complex in ECG signals, as QRS complexes represent the main source of periodicity in the ECG (Pan &
Tompkins, 1985), which aligns with the periodicity of interest in our experiments for the ECG signals. The comparison
results are given in Table 16.

Table 16. Performance comparison of ours with other methods in ECG datasets for HR detection

Method PTB-XL DaLiAECG WESAD

MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑ MAE↓ RMSE↓ ρ↑
Heuristic
Fourier 10.51 28.65 49.12 4.06 15.46 36.86 4.88 18.57 56.69
Autocorrelation 8.64 19.93 59.63 7.17 14.07 38.17 4.19 8.046 89.90
RobustPeriod 72.79 80.87 -2.93 12.79 23.21 37.49 4.19 7.130 62.69
Wavelet-based 10.06 22.85 50.73 5.41 10.94 90.52 9.47 23.19 70.45
Ours 3.75±0.02 13.58±0.03 79.30±0.17 1.29±0.001 2.08±0.01 99.12±0.01 2.13±0.01 3.88±0.06 93.52±0.61

As shown in Table 16, our proposed method outperforms traditional methods by a significant margin. we believe that the
main reason for this performance difference is the fact that these methods are often developed by optimizing numerous
hyperparameters specific to the dataset statistics, making them less effective in a general case.

27



An Unsupervised Approach for Periodic Source Detection in Time Series

F. Visual Examples
Here, we give some examples where the heuristic rule-based methods fail to detect periodicities in signals due to various
types of noise. First, we show the cases when our method performs better than the Pan-Tompkins (Pan & Tompkins, 1985)
algorithm for periodicity detection in ECG signals.
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(a) A 10-second ECG recording from PTB-XL, noise is present with numerous spikes at the same amplitude as the QRS complex, leading
to the Pan-Tompkins algorithm detecting multiple beats at the same location.
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(b) A recording from PTB-XL that contains an abrupt impulse noise at the beginning, which causes Pan-Tompkins to fail.

Figure 8. The visual examples for ECG signals with the raw signal x(t), the output of the model fθ(x(t)), and the detected points using
Pan-Tompkins algorithm. Despite its common use for identifying periodic patterns, QRS complexes, in ECG signals, we present two
examples where the Pan-Tompkins algorithm fails due to various types of noise in the recordings.

One interesting outcome of these illustrations is that the model demonstrates the ability to entirely disregard the impulse
noise at the beginning (See Figure 8a), and effectively approximate the periodicity in the signal. Moreover, a closer
inspection of these two figures shows that the proposed method also works as an unsupervised segmentation algorithm of
signals. For example, the end of Figure 8 demonstrates that the output waveform matches the desired patterns. However,
when the time series becomes non-stationary in the segment, the segmentation shifts as the proposed algorithm assumes the
signals are periodic or quasi-periodic in the investigated segment. This assumption is widely used in algorithm development
for the human-generated data (Demirel & Holz, 2023), such as signals generated from the cardiovascular (ECGs, PPGs) or
skeletal system (IMUs) of humans similar to our case. Therefore, we believe that the proposed algorithm can be applied to
segmentation tasks, enabling the identification of the desired periodic events in a completely unsupervised manner.
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Here, we provided an example of how the proposed method is similar to an adaptive sinusoidal selector based on the Fourier
transform. In uniformly sampled time sequences, periodicity is typically identified by the highest value in the spectral
density (Li et al., 2010). Nevertheless, this method proves ineffective in situations where multiple periodicities exist within
the frequency range of interest or noise, as illustrated in Figure 9.

0

4

100 800200 300 400 500 600 700

0

-5

Time (ms)

Magnitude
Input waveform Output waveform Pan-Tompkins

(a) An 8-second ECG recording from DaLiA x(t), and the output waveform from the trained model fθ(x(t)). It can be seen that the
recording is noisy at the beginning and the end where the Pan-Tompkins algorithm confuses true periodic patterns with noise in the signal
while giving a good approximation of the heart rate.
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(b) The spectra of the input and output signal for comparison. The frequencies lower than 0.5 are shown with red as they correspond to the
heart rate outside of physiological limits, i.e., lower than 30 beats per minute. The input spectrum shows the main periodic signal is at
around 1 Hz due to corrupted waveform, especially at the beginning and end. A rule-based algorithm depending on the input spectrum
may incorrectly identify the desired periodicity due to inaccuracies in the peak location. However, the spectrum of the output waveform
increased the magnitude of the sinusoidal at the desired periodicity region significantly, close to a 7 dB increase. More importantly,
the output waveform includes the desired pattern as the dominant peak rather than noisy ones, which allows the detection of targeted
periodicity in the signal.

Figure 9. The visual examples for ECG signals with the raw signal x(t), the output of the model fθ(x(t)), with their corresponding
spectral densities. The figures show how the trained model can select and amplify the desired pattern even though it is under the noise
level.

According to these two figures, we can infer that the model learns the periodic representations of interest from the time
domain waveform such that when it is evaluated with a signal that the model has never seen before, it can detect these
patterns and surpass the noise. The task becomes relatively simpler for ECG signals due to their distinct periodicity indicator,
the QRS complex. This allows the model to learn and effectively ignore impulse noise or other periodic noise sources even
though they are both within the frequency range of interest.
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Here, we present a more challenging example involving signals generated by blood volume changes. These signals are
susceptible to noise and exhibit less evident periodicity, lacking specific complexes like ECG signals.
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(a) A 8-second PPG recording from IEEE SPC x(t), and the output waveform from the trained model fθ(x(t)). The input waveform is so
noisy that the true volumetric blood changes are not observable at all. It can be seen from the below figure that the desired periodicity is
under the noise level.
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(b) The spectra of the input and output blood volume changes for comparison. The frequencies lower than 0.5 Hz are shown with red
as they correspond to the heart rate outside of physiological limits, i.e., lower than 30 beats per minute. Similarly, we limit the highest
frequency to 4 Hz. The input spectrum shows the main periodic signal is at around 1.2 Hz due to the corrupted signal. Similar, to the ECG
case, a rule-based algorithm depending on the input spectrum may incorrectly identify the desired periodicity due to inaccuracies of the
dominant peak in the power spectrum. The model outputs a waveform that contains the amplified sinusoidal at the desired periodicity
while increasing the overall signal-to-noise ratio.

Figure 10. The visual examples for photoplethysmogram signals with the raw waveform x(t), and the output of the model fθ(x(t)). A
waveform example where the Fourier transformation-based periodicity detection fails because of a noisy periodic pattern at the same
frequency band. In contrast, the proposed model effectively learns and amplifies the pattern of interest for accurate detection.

What stands out in these two figures is that the model learns the pattern of the desired periodic waveform from the time
domain during training such that it can detect these patterns during inference (even though they are under the noise level)
and surpass the other periodic noise.

These illustrative examples further support the claim that the proposed method operates as an adaptive sinusoidal selector
by learning the periodic source of interest during training and amplifying them during inference without the need for
supervision. We believe the results can be easily improved more by selecting clean samples during training, i.e., curriculum
learning, to reinforce the pattern learning, or incorporating physiological limits more effectively into the loss function.
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G. Computational Efficiency
In this section, we provide details on the computational efficiency of our proposed method. We employed a U-Net
architecture with 300K parameters, making it lightweight and suitable for deployment on various platforms, including
mobile devices. For context, MobileNetV2, often considered a lightweight model in deep learning, has 3.4M parameters,
which is approximately 10 times larger than our model.

To provide a comprehensive comparison, we conducted two types of model overhead analyses using the blood volume
pulse signals as input similar to the parameter calculations in Appendix D.1. First, we calculated the inference time on a
computer equipped with an Intel Core i7-10700k CPU running at 3.80 GHz, 32 GB RAM. Second, we deployed our model
on a MAX78000 AI Accelerator, which has previously implemented U-Net architectures (Moss et al., 2023). Detailed
performance metrics and comparisons with the average of five runs with the standard deviations are provided in Table 17
where the running time is given in milliseconds.

Table 17. Memory and inference time comparison

Method MAX78000 PC
Memory Requirement Inference Time Memory Requirement Inference Time

FFT 2.8±0.1 KB 0.05±0.02 1.92±0.2 KB 0.10±0.03
Wavelet Out-of-Memory N/A 10.4±1.2 MB 41.1±3.6
Robust Period Out-of-Memory N/A 24.7±3.6 MB 675±30.2
Ours 19.1±0.7 KB 26.9±0.23 16.4±1.4 KB 3.2±0.7

An important aspect to note is that PyTorch (or MATLAB) efficiently computes the FFT; when analyzed with the profiler,
the memory usage is close to that of the input (in-memory computation). However, for the MAX78000, our implementation,
instead of DSP, requires slightly more memory. Overall, as shown by these experiments, our method not only offers better
solutions for periodicity detection but also emphasizes practical implementation by having a very low memory footprint with
fast inference. Moreover, some traditional methods do not fit the MCU flash memory due to heavy wavelet computations.
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